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THE USE OF HIGH-ORDER FORMS IN STABILITY ANALYSIS* 

A.V. STEPANOV 

A method is proposed for determining whether forms of arbitrary high 
order are positive or negative definite in a region of Rn coinciding 
with one of the coordinate angles. Using such functions, one can then 
establish various modifications of well-known results of stability 
theory. A theorem of Grujic 111 concerning the exponential stability of 
large-scale systems, generalized to the case of m-th order estimates, 
yields new zones of absolute stability for the equations of 
translational motion of an aircraft. Various results are established 
pertaining to the monotone stability of systems in which the right-hand 
side is a polynomial of a special kind. 

In many problems of stability theory it suffices to construct a 
Lyapunov function which is positive or negative definite not in the 
whole space but only in a subspace, namely, a cone. This is a logical 
approach, for example, in relation to biological communities, since the 
trajectories of a system describing the dynamics of such interactions 
never leave the first orthant. Conditions for quadratric forms to be 
positive (negative) definite in a specific cone - one of the coordinate 
angles - were studied in /2/. A criterion for a quadratic form to be 
positive (negative) definite in a certain region of Rn, similar in a 
sense to the conditions obtained in /2/, was established in 131 and f4/. 
Even before that, a criterion was proposed /5/ for a form of order 3 to 
be positive (negative) definite in one of the coordinate angles. Also 
worthy of mention is a method described in /6/ to determine whether 
forms of arbitrary even order are definite in the whole space. 

Relying on the concept of a cone coinciding with a coordinate 
angle, as well as the results and /5/ and /6/, a method can be devised 
to investigate whether a form of arbitrary high (including odd) order is 
definite in an orthant of Rn. 

1. ~QfiniteneSS Of a fOPm Of arbitrary order min a CO?le. A cone in R" coinciding with 
a coordinate angle will be denoted as follows /7/: K {a,,,...,a,,), where 
of a basis (a*&} 

ai, are elements 
taking values +1 and -1, and 

ai, = slgnq, xj+O; CQ~~>O 

Throughout, i = 1, 2, . . ., n. 
In a cone X of the region H={s:O~,<~z/I=jx,I+...~ /zn]<oo) we consider anm-th 

order form 

W(X) = $I * . * 
i,=l 

i 
im-'m-x 

Ai, i,xi,. . * xi,, AI,...~, = const 
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We perform two substitutions in succession: first, yi = ai&, where aio are the basis 
elements of the cone, and yi = ui2. This gives a form of even order: 

‘t”) = i.l . . . i,jm_, Bi, . . . i,Ufa . . . Uj3,1, a, ,.. i, = const 

which is positive (negative) definite in the whole of R" if and only if kT has the 
corresponding property in the cone I(. Using a result of /6/, we apply the mapping 

which carries Sz fu) into a quadratic function 

Thus, in order to determine whether the m-th order form FI is positive (negative) definite 
in the cone Ic, we need only analyse the corresponding property of the quadratic form V(z) in 
the whole space &C_ R'. This in turn may be done by well-known methods, e.g., using 
Sylvester's criterion. We have thus indicated a quite !general way to determine whether forms 
of arbitrarily high order are positive (negative) definite in a cone. It is important to 
observe, however, that certain specific problems, such as deriving the necessary and sufficient 
conditions for a third-order form to be positive (negative1 definite in a cone coinciding 
with one of the coordinate angles, can be attacked from a different angle. 

2. Conditions for a third-order form to be positive Inegative) definite in a cone. In a 

cone # of the region H, consider'the third-order form 

w (5) = jl xkl/k (x), vk (‘) = jjzl %jxixj (2-i) 

Here Vk(x), for each k, is a quadratic form with matrix A<"), whose elements are aEij. 

Let o = (ii, 1 . ., i,) be a sequence from the set Qm of all strictly increasing sequences, 

each consisting of r numbers from the set N = (1, 2, . . ., ~1, and let A(:o:CT] denote the 

principal submatrix of the matrix of vk (d consisting of the elements of A(") with 
incides in o. 

Theorem 1. The form w(x) is positive (negative) definite in the cone f( if and only if 
the system of non-linear algebraic equations 

(A~~$,x~~ xc) = cx+$, ik E: (f, OE Q,, 

k = 1, 2, . . ., r 
ly = 0, y = N \ 0, xy E R”’ 

r = 1, 2, . . ., n 
(2.2) 

has no non-trivial solutions in g for any h< 0 (h> 0). Here ai20 are basis elements 
for the cone. 

The following example will illustrate the possibilities for third order forms. Con- 
sidering the region 

G= K‘{am, . . ..a& X I, i =[%m[ 

let us determine whether the following model system is monotonically stable: 

Zk’ = - ZkVk (z). v, (xf = i: 
*, j-1 

agi jzizj 

akj, = car&, k = 1, 2, . . 1, n 

(2.31 

Such systems were introduced /8/ as model systems for stability analysis in the frame- 
work of a neutral linear approximation. The system satisfies the conditions of Krasnosel'skii's 
Lemma in the region of interest. Consequently, if the initial data lie in I(, the trajectories 
of the system will not leave the cone. System (2.3) will be monotonically stable in K if, 
for any initial data in that region, 
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d (f) = 5 a& @I 
i=l 

is a strictly monotone decreasing function of time along the trajectories of the system. 
Thus, system (2.3) will be monotonically stable in the cone K if and only if the form 

is positive definite there. Hence it is obvious that the monotone stability properties of 
the system depend on the relationships among the basis elements {a<@} of K and the coef- 

ficients n~+f. 
Similar results may be obtained in a monotone stability analysis for the following 

system of differential equations, where the right-hand side is a special kind of polynomial 
of degree m: 

ri, = - zi, i . . - in,i_, Ai,...i,Fis * ’ ’ li, 
i,=i, 

A -con&, i,= 1,2,..., n i,...i,, - 

3. Coefficient CPitQPim for a third-order form to be positive (negative) definite in a 
cone coinciding with a COOrdhfXtQ angte. To fix our ideas, let us consider the first quadrant. 
In the region {O,<ll~ll=l/(s,x)(~,r~~o,r,~0)~ consider the form 

(3.11 

Obviously, this form can be written as 

Using our previously established criterion for a third-order form to be positive (negative) 
definite, we obtain the following result. The form (3.1) is negative definite in the first 
quadrant if and only if the systems of algebraic equations 

(3.2) 

considered in the above region, have no non-trivial solution in the first quadrant for any 
h> 0. To determine whether these systems are solvable, proceed as follows. Evaluate the 
resultant of the first system and equate it to zero, on the assumption that a solution exists. 
Clearly, (108 and as0 must be negative. We thus obtain a biquadratic equation with 
parameter, 

f (y2) 3 A,$ + itAlya + haA, = 0 

Now use Newton's method to find an upper bound for the positive roots z = y'. The first 
system in (3.2) is also unsolvable if the equation f(z) = 0 has complex roots, i.e., if 

ASa - MIA, < 0 

Obviously, all the above algebraic arguments can be formalized in algorithmic form. We 
thus have a numerical method to test the form W for positive (negative) definiteness in a 
cone of Ra 

4. bdificati~ of &t&c's expmentiat stability theorem for large-scale systems. In 
the region 
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consider a system of equations 

(4.1) 

which splits into k interacting subsystems 

whose isolated subsystems have the form 

xs' = g. (t. +J, g, (t, 0)~ 0, s = 1, 2, . . ., k (4.2) 

Rssume that the right-hand sides of system (4.11, and systems (4.2) are such as to 
guarantee the existence and uniqueness of solutions for any initial data in the region of 
interest. 

The trivial solution of the compound system (4.3.) will be analysed for stability by 
means of the Lyapunov function 

where v, ($9 +*) is a Lyapunov function for the s-th isolated subsystem of (4.1). Assume 
that all the solutions of subsystems (4.2) are either exponentially stable or exponentially 
unstable. Then there is a Lyapunov function V‘ (t, $8) for each subsystem in (4.2), such 
that 

where e,, >O (s = 1, 2, . . ., k; .I = 1, . . et 4) are real constants and pLs takes values of -1 or 
il, depending on whether the trivial solution of the s-th subsystem is exponentially stable 
or exponentially unstable. 

We shall say that the interaction vector 

h (t, 5) = col (klT, . . ., hkT) 

belongs to class H, if for any t and X 

where ai,...i, are real constants. The elements 

Bi,...i, z ~ilCjlA...im + air...in, 

generate an m-th order form 

where &,.,.i, =t i, if ir = i, = . . . = i, and &,...i, = 0 otherwise. 

~~eorern 2. Assume that for each s, subsystem (4.2) of system (4-l), considered in N, 
has a function V, (t,x,) satisfying inequalities (4.3); assume moreover that the interaction 
matrix h&z) belongs to class H,. Then, if the it?-th order form w(g) is negative 
definite in the cone (g> 0), the trivial solution of the compound system (4.1) is asymp- 
totically stable in the large, uniformly in t,, and 50. 

Grujic's well-known exponential stability theorem for large-scale systems of differential 
equations /1/ is based on the use of Lyapunov functions for the isolated subsystems, in the 
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form of expressions involving quadratic estimates, and on the application of Sylvester's 

criterion. 
Theorem 2 can be used, for example, to obtain more precise boundaries of the region of 

admissible parameter values for the equations of translational motion of an aircraft /9/, in 
which the equations are absolutely stable. 

5. Investigation of the equations of t~nsZattino2 motion of an aircraft using third- 
order forms. Consider the system of equations 

=a = - P,*r + 0. 0’ = x B,x, + ‘IQ@ - f (u) (5.1) 

Ps> 6, r> 0, P2<6 
0 < 0.j ((J), Q + 0; f (0) = 0 

which describes the translational motion of an aircraft. Throughout, tn= 1,2,3,4, and the 

summation is over S from s=l to s = 4. 
Decoupling of Eqs.(S.l) yields two isolated subsystems: 

ZS. = - p,ss (5.2) 
a’ = F&U - f (u) (5.3) 

Let us assume that system (5.1) has a Lyapunov function 
V = c~V,-t-c,V*, where V,=/\Z~ and v, = 1 u $ are Lyapunov func- 
tions for the isolated subsystems (5.2) and (5.3)‘ respectively. 
The functions 1;, and V, satisfy the estimates 

v; < -3p II + \I83 v-2. < 3rPz I u I3 

i.e., the isolated subsystems have exponentially stable trivial 
solutions. The total derivative along trajectories of system (5.1) 
satisfies the estimate 

The form W(y) is negative definite in the positive orthant 
fu > 0) if and only if the system of non-linear equations 

-3pW,p + %Y,Y, + 4c,6yz~ = h 

c*Y1z + wJY,Y* + 3WP,Yz* = 1, 

has no solutions in the cone (y&O) of Ra for any h>O. Using the coefficient criteria 
for definiteness of a third-order form in two variables in the first orthant (see Sect.3), 
we obtain the following estimates for the region of admissible values: 

(5.4) 

Stability analyses of system (5.1) have been undertaken by many authors (/g-12/ etc.) 
using a variety of methods and obtaining various results. In recent years similar automatic 
control systems have been investigated using scalar functions obtained by combining the 
components of a suitable vector-valued Lyapunov function. Thus, the following estimates 
have been established /91: 

Our estimates (5.4) determine regions of admissible values for the parameters of system 
(5.1), in which it is absolutely stable in the large (the solid curve in the figure, where 
& = 0, Cl = cp = I), which are new compared with the previously determined regions /9/ (the 
dashed curve). 
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ON THE STATIONARY MOTIONS IN A NEWTONIAN FIELD OF FORCE OF A BODY THAT ADMITS 
OF REGULAR POLYHEDRON SYMMETRY GROUPS* 

R.S. SULIKASHVILI 

The author's results /l-3/ on the stationary motions in a central 
Newtonian field of force when the centre of mass is assumed fixed, of a 
fixed system of particles of equal mass, located at the vertices of a 
regular polyhedron, are written in a general mathematical form and are 
extended to any fixed system whose mass distribution admits of one of 
the symmetry groups of a regular polyhedron (tetrahedron, octahedron, or 
icosahedronf. It is shown that the results obtained earlier by 
considering the first terms of the Taylor expansion of the force 
function are preserved when account is taken of the full expression for 
the force function (potential). The stability of these solutions is 
investigated. 

1. We consider the motion of a rigid body with a fixed point in a central Newtonian 
field of force. Let the fixed point G be at the centre of mass, and let the mass distribution 
in the body be invariant under transformations that belong to one of the discrete symmetry 
groups: the tetrahedron, octahedron, or icosahedron. 

Let O&flr, be a fixed coordinate system with origin at the attracting centre 0, and 
G.?+ a dimensionless coordinate system rigidly connected with the body (the scale of length 
is a characteristic dimension i!. of the body). The force function of Newtonian gravitation 
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